
16-833 Course Project
Is Monocular Vision Sufficient For Multi-view Visual Odometry?

Ravi Tej Akella (rakella) Neha Boloor (nboloor) Anirudh Chakravarthy (achakrav)
Naveen Venkat (nvenkat)

Abstract

In scenarios such as autonomous driving, vehicles are often mounted with several camera sensors. As the robot
navigates through the environment, we need to infer the odometry to accurately localize the robot’s position on a
global map. Several methods use complicated geometry or learning-based methods to do this. In this project, we aim
to develop simple baselines for multi-view visual odometry, leaning on advances in monocular visual odometry. We
propose some heuristics and learning-based approaches to fuse monocular visual odometry estimates from each cam-
era and evaluate its performance. Code available at: https://github.com/neha-boloor/MVO-fusion.

1 Introduction
Visual SLAM has gained prominence in literature due to the ease of capturing images from autonomous robots and
vehicles. Visual odometry (VO) is one of the first steps towards visual SLAM wherein given paired images between
two timesteps, the objective is to predict the relative camera poses. This is slightly different from traditional structure-
from-motion (SfM), in that VO predictions need to be online while SfM can also be performed in an offline setting.
This way VO is a more realistic problem setting for autonomous navigation use cases.

While several learning-based and geometry-based VO methods have emerged in the literature, monocular VO methods
have received significant attention. Under this challenging setting, we only assume access to a single camera and no
inertial information. Intrinsically, this is a difficult problem due to issues such as scale drift over time. However, since
this setting is well-studied and works well in practice, we base our method on existing state-of-the-art MVO methods.

In practice, we often have multiple cameras mounted onto a robot that can be used for more precise localization. This
task is known as multi-view VO, which has garnered limited interest until recently in the literature. Existing works
either heavily rely on the scene geometry or use complicated networks posing challenges for real-world generalization.

In our project, we aim to answer the question Is Monocular Vision sufficient for Multi-view Visual Odometry? by
exploring whether MVO results can be stitched together to develop a simple yet robust multi-view VO method. Con-
cretely, given C cameras, we aim to fuse the C MVO predictions to generate a single more robust pose estimate for
the agent. We explore a variety of fusion mechanisms to identify a strong baseline.

2 Related Work

2.1 Datasets
In order to validate our hypothesis, we need datasets that consist of multiple calibrated cameras. Existing VO works
benchmark on datasets such as KITTI [1], TartanAir [2], EuRoC [3], or TUM RGBD [4] which leverage stereo
geometry to provide auxiliary information such as depth. However, these datasets are inappropriate for our use case
because the baseline between the stereo pair is usually small, resulting in insufficient perceptual differences between
the two views. In such cases, running MVO independently on both images is almost as good as using a single image.

We would like to have a dataset consisting of ≥ 3 cameras, which poses additional challenges compared to stereo
image pairs. One such dataset we identified is the NuScenes [5] dataset which consists of 6 cameras (as illustrated in
Fig. 1a, front-left, front, front-right, back-right, back, back-left). NuScenes is a large-scale autonomous driving dataset

1

https://github.com/neha-boloor/MVO-fusion

a) Camera configuration on a robot

1

2

3

5

Rrel | trel
1,5 1,5

1

2
3

5

i

j

b) Discrepancy b/w predicted & actual trajectory

Actual
Trajectory

Predicted
Trajectory

Rrel | trel
1,5 1,56

4

4

6

Avg.

Avg.

Figure 1: Illustration of MVO fusion. (a) Suppose we have an agent with 6 cameras. We consider the scenario where the relative
configuration of the cameras [Rrel|trel] remains fixed when the agent moves (e.g. as shown for cameras 1 and 5 here). We apply
an MVO algorithm on each camera independently and obtain the camera motion estimates (as shown in (b)). (b) However, the
trajectories predicted by the MVO algorithm (bottom) may not match the actual trajectory (top). Moreover, the noise in predictions
would be different for each camera (here, the red and the purple trajectories are perturbed differently). Our goal is to fuse the
multi-camera predictions to obtain one trajectory (black) which represents the motion of the agent more faithfully.

consisting of images, LiDAR scans, RADAR scans, sensor calibrations, and sensor poses. This is a challenging dataset
consisting of dynamic urban scenes i.e., several moving objects exist in the scene, where simple geometric approaches
for Stereo VO would fail. Therefore, we choose the NuScenes dataset for our experiments.

2.2 Multi-View Visual Odometry
Before exploring approaches for monocular VO, we wish to study existing multi-view VO to gather insights. However,
in contrast to Monocular and Stereo VO, we observe that this field is not well-explored and to the best of our knowl-
edge, only one prior work exists. AFT-VO [6] uses a transformer architecture to learn a data-driven fusion from several
asynchronized sensors. The authors note that probabilistic fusion techniques can be used for synchronized cameras,
and we are motivated to validate this hypothesis. Therefore, for simplicity, we assume the presence of synchronized
sensors in this project. This kind of synchronized sensor data is also made available in the NuScenes dataset.

2.3 Monocular Visual Odometry (MVO)
For this project, to build our method, we first study monocular VO under a fully-supervised setting. DPT-VO [7] uses
a transformer network to resolve scale ambiguity in monocular VO. JPerceiver [8] uses a multi-task network for joint
depth estimation, pose prediction, and BEV layout from an input image. DytanVO [9] jointly optimizes for motion
segmentation and camera pose to achieve strong performance on dynamic urban scenes.

TartanVO [10] incorporates camera intrinsics into the model and introduces a scale-ambiguous loss function. The
model is trained on synthetic dataset (TartanAir [2]) and shows strong generalization to real-world datasets such as
KITTI and EuROC without additional fine-tuning. DPVO [11] introduces a two-stage network for MVO where the
patch extraction module splits the image features into patches and the update module attempts to track these patches
over time, while also optimizing for camera poses using differentiable bundle adjustment.

For the scope of our project, we work with TartanVO. We elaborate further details on its usage in Sec. 4.

3 Approach
We aim to develop an approach to fuse trajectory predictions obtained using MVO method on individual cameras
installed on an agent as shown in Fig. 1. In Sec 3.1, we formally introduce Monocular Visual Odometry (MVO)
and provide the motivation for fusing independent MVO predictions. Lastly, Sec 3.2 discusses four strategies for
late-fusion of individual MVO predictions to obtain a robust estimation of relative motion.

2

3.1 Preliminaries
Monocular Visual Odometry. We consider having access to C cameras each with intrinsics {Kc ∈ R3×3}Cc=1

calibrated with a certain fixed relative configuration (Fig. 1a). From each camera c we receive a video stream (se-
quence of images) {Icn ∈ RH×W×3}Nn=1. For each camera c, the MVO algorithm outputs a relative pose prediction
{[∆Rc

n|∆tcn]}N−1
n=1 between each consecutive pair of frames, where ∆Rc

n and ∆tcn are the relative rotation and trans-
lation between nth and (n+ 1)th frames. Given the predictions, the pose of the camera c can be updated by:

Rc
n+1 = (∆Rc

n)R
c
n ; tcn+1 = ∆tcn + tcn (1)

MVO Fusion. For simplicity, we assume that the video feeds across the cameras are temporally aligned (i.e. Iin and
Ijn belong to the same time instant n). Our goal is to use MVO to predict the trajectory of each camera {[Rc

n|tcn]}
simultaneously and fuse the predictions to obtain a single trajectory. Our fusion function can be expressed as:

fuse({[∆Rc
n|∆tcn]}) → {[∆Rn|∆rn]} (2)

Note that Eq. 1 assumes consistent noise-free outputs from the MVO algorithm. However, this may not hold in
practice. For instance, if the MVO algorithm uses a deep neural network that is not robust to domain shifts, we would
lose precision in poses. Some methods depend on auxiliary data or tasks (e.g. depth prediction, loop closure, etc.)
to improve the predictions. Instead, we ask can we improve the performance of MVO if we have multiple cameras?
Formally, we assume that the errors in the relative motion predictions of each individual camera are independent when
conditioned on the frames from the given camera. Our intuition is that through the fusion of multiple cameras, one
may be able to mitigate the noise and obtain more accurate predictions.

Late fusion. We adopt a late fusion strategy. In theory, this leads to an approach agnostic to the underlying MVO
algorithm. For instance, one can directly fuse the pose predictions as shown in Eq. 2 allowing flexibility to run the
MVO algorithm of choice for each camera. More sophisticated deep-learning approaches can fuse high-level features
from a neural network trained for MVO. This allows the model developer to employ supervisory signals beyond those
used by the backbone model leading to more accurate predictions. In the next section, we discuss four different
strategies to fuse the individual noisy predictions to obtain a robust estimate of the robot’s relative motion.

3.2 Late-Fusion Strategies
Given per-camera rotation and translation estimates, the objective is to aggregate the predictions into a single relative
motion estimate for the agent. Assuming that the prediction errors are independent and identically distributed, this
problem reduces to finding a central tendency. We propose the following strategies for fusing MVO predictions. Here,
local fusion refers to fusion at each timestep, and global fusion refers to fusing trajectories globally.

(a) Local Fusion. In the following strategies, we fuse the relative motion predictions at each time step.

1. Euler angle fusion. We convert each of the C rotation predictions into their Euler angle representations and
then find their central tendency using (i) mean and (ii) median. The translations are fused by taking their mean
across each Cartesian dimension in the robot’s body frame.

2. Quaternion averaging. In this strategy, we convert the rotation predictions into quaternion representations and
then average them using the technique proposed in [12], which is given as:

q̄ = argmaxq∈S3 q⊤

(
n∑

i=1

qiq
⊤
i

)
q, (3)

where {qi}ni=1 are the independent quaternion predictions that need to be averaged. While this objective seems
hard to decipher at first glance, it can be rewritten as follows:

q̄ = argmaxq∈S3

n∑
i=1

< q, qi >
2 . (4)

3

Figure 2: Learning-based late fusion. Given images from several cameras at time t and t + 1, we concatenate the per-camera
latent features obtained from TartanVO and use an MLP to predict a single relative pose, aggregating information across views.

Essentially, we are trying to find the quaternion that is closest to all the prediction quaternions in terms of cosine
similarity. The translation predictions are fused similar to (1) by averaging over each Cartesian dimension.

(b) Global Trajectory Fusion. Since the trajectory predictions are generated by integrating the relative predictions
over time, they are susceptible to drift, and simple methods such as mean or median not work well. Unlike the
aforementioned methods, we now focus on fusing entire unrolled trajectories in the inertial frame.

1. Robust polynomial fitting through RANSAC. We fit a polynomial through the trajectory points using squared
error loss and run this optimization using RANSAC for robustness against outliers.

2. Refined mean via iterative outlier removal. A more direct approach to getting rid of the outliers is by it-
eratively pruning trajectory points with high error margins w.r.t the estimated mean trajectory. Initially, the
mean trajectory is obtained using local fusion such as quaternion averaging. Then, at each iteration, we find the
farthest point from the mean trajectory and nullify its contribution to the mean by deleting it.

(c) Learning-based Fusion. While the aforementioned methods use domain knowledge to find the central tendency,
we can also task a neural network to aggregate the predictions. This requires very little prior knowledge and relies on
data-driven supervision for estimating the robot’s motion. As illustrated in Fig. 2, we use TartanVO, the neural network
trained for MVO in our case, to extract latent features capturing the essence of the relative motion independently. and
perform a learning-based fusion.

4 Experiments

4.1 Preliminary Experiments
TartanVO. We set up the environment and codebase for TartanVO, and ran inference using the pre-trained model on
sequence 10 from the KITTI dataset (Fig. 3). We could replicate performance as reported in the paper, hence verifying
the correctness of the set-up.

DPVO. Next, we set up the environment for DPVO, and using a pre-trained model, we ran inference on KITTI,
NuScenes (Fig. 4), and self-recorded iPhone videos.

The architecture used in DPVO includes a recurrent neural network component to track each patch, extracted by the
transformer-based neural network in the first stage, through time. Its complex modules make it hard to choose the
right feature per image pair in the sequence. Hence, we decided to only use TartanVO for further analysis.

4

Figure 3: This figure shows the inference of TartanVO on (a) Sequence 10 from KITTI dataset (left), and, (b) One of the 6 Cameras
of Scene 1 of NuScenes (center). (c) Running TartanVO on 6 cameras in NuScenes gives inconsistent results across cameras (right).

Figure 4: Using pre-trained DPVO for inference on NuScenes leads to realistic and temporally consistent pose prediction

4.2 Late-Fusion Strategies
4.2.1 Local trajectory fusion

Euler Angle Fusion and Quaternion Averaging. The results for local trajectory-based fusion approaches are vi-
sualized in Fig. 5. We plot individual trajectories of each camera (e.g. CAM FRONT), and also the three averaging
techniques - Quaternion averaging (AVG QUAT), mean Euler angles (AVG EUL), median Euler angles (MED EUL).
Clearly, the rolled-out trajectory fits close to the ground-truth trajectory. A key takeaway from our analysis is that the
rotation is more faithfully captured by averaging quaternions, compared to euler angles [12]. However, the absolute
trajectory error is still quite high when compared to other works in the literature. Since fusion approaches are limited
by the performance of the MVO method, we are unable to improve this baseline further.

4.2.2 Global trajectory fusion

Refined Mean via Iterative Outlier Removal. In this approach, we iteratively prune data points with high error
margins w.r.t the estimated mean trajectory to get rid of outliers and refine the mean trajectory. In Fig. 6, we plot the
mean trajectory (a) before refinement, (b) after 100 iterations of refinement, (c) after 200 iterations of refinement. The
corresponding paths of the 6 cameras are plotted in (d). Additionally, plot (e) shows the RMSE for the mean trajectory
w.r.t the ground truth as the number of pruning iterations increases. We see that initially, pruning helps in refining
the mean estimate, bringing it closer to the ground truth. However, as we keep pruning further, we lose track of the
correct points as can be seen by the increased RMSE beyond 150 iterations. Choosing the sweet spot for the number
of iterations without using ground truth is an interesting future work.

Polynomial Fitting with RANSAC The results for polynomial fitting are visualized in Fig. 7. It can be seen that
polynomial fitting with RANSAC can be very effective against outliers despite heavy noise in MVO predictions.
However, this method fails when the ground-truth trajectory is non-smooth or has sharp variations. Further, the degree
of the polynomial is a hyperparameter for this method which can significantly affect the predictive performance of
the approach. Since the performance of this approach relies on how well the polynomial can explain the ground-truth
trajectory, it is hard to deploy this approach in practice.

5

Figure 5: This figure shows the inference of TartanVO on (a) Sequence 103 from NuScenes dataset (left), (c) Sequence 1077 from
NuScenes dataset (right) along with the Euler Mean, Euler Median, Quaternion Averaging and Ground Truth trajectories.

(a) No refinement (b) 100 iterations (b) 200 iterations

(d) Trajectories from 6 cameras, and the
100-iter refined trajectory

(e) Trajectory RMSE of the refined mean
trajectory after each iteration.

Figure 6: This figure shows the inference of TartanVO on (a) Sequence 103 from NuScenes dataset with no refined mean strategy
applied (left-most), (b) Refined Mean run for 100 iterations (c) Refined Mean run for 200 iterations (d) Refined Mean run for 100
iterations with GT and Individual Camera Estimates (e) RMSE Vs Refinement iterations.

4.2.3 Learning-based Late Fusion

We aim to aggregate features across multiple views to predict a fused estimate which is more robust, using per-camera
predictions from TartanVO through simple feature concatenation. Given d-dimensional features from each image, we
construct a resultant feature vector of C × d, where C denotes the number of cameras (C = 6 in our case). Now,

6

Figure 7: Trajectory Fusion via polynomial fitting with RANSAC applied on two Nuscenes sequences. The images on the left
include the ground-truth trajectory (orange) along with the individual MVO predictions. The corresponding images on the right
only visualize the ground truth and fused trajectory for clarity.

Figure 8: Training loss of our proposed learning-based fusion method, plotted across epochs.

using a multi-layer perceptron with learned weights, we reduce this concatenated feature vector to predict the relative
transformation. We supervise the network using the ground-truth relative poses. Specifically, for the translation
component, we follow TartanVO and apply a cosine embedding loss. For the rotation component, we apply an L2-loss
over the quaternions. See [10] and our code implementation for more details.

Results: To validate whether this problem is indeed tractable to solve, we first visualize the training loss across
epochs in Fig 8. We observe that the loss decreases, which indicates the network is indeed learning. However, due to
unanticipated setup difficulties on fusing TartanVO features on NuScenes, we are unable to evaluate the performance
of this method. We note that future work could precompute features for evaluation, which we are unable to explore
due to resource constraints.

7

5 Conclusion & Future Work
In this project, we aim to develop various simple baselines for multi-view visual odometry using MVO methods. In
particular, we rely on TartanVO and explore a variety of late fusion methods to generate a more robust pose prediction.
Preliminary results show promise in a few of these approaches, however, the results are still very early to compare
against the existing state-of-the-art.

In the future, we aim to explore a few directions. Firstly, we wish to incorporate the fact that the relative configuration
of the cameras remains fixed during the motion of the agent. To this end, we wish to explore optimization-based
methods which can directly solve for the noise in each pose prediction. Secondly, it is important to account for the
uncertainty while aggregating the per-camera predictions. For instance, in our current setup, the mean trajectory
estimates can be improved by using weights that indicate the uncertainty in pose predictions by each camera. Thirdly,
more analysis is required on how to fuse the predictions when each camera provides incorrect estimates such that their
central tendency deviates away from the ground truth trajectory. We believe that these are some promising directions
and our project provides an implementation-level groundwork to explore these ideas in the future.

References
[1] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision benchmark suite,” in

2012 IEEE conference on computer vision and pattern recognition, pp. 3354–3361, IEEE, 2012.

[2] W. Wang, D. Zhu, X. Wang, Y. Hu, Y. Qiu, C. Wang, Y. Hu, A. Kapoor, and S. Scherer, “Tartanair: A dataset to
push the limits of visual slam,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 4909–4916, IEEE, 2020.

[3] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and R. Siegwart, “The euroc
micro aerial vehicle datasets,” The International Journal of Robotics Research, vol. 35, no. 10, pp. 1157–1163,
2016.

[4] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of rgb-d slam
systems,” in Proc. of the International Conference on Intelligent Robot Systems (IROS), Oct. 2012.

[5] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom,
“nuscenes: A multimodal dataset for autonomous driving,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11621–11631, 2020.

[6] N. Kaygusuz, O. Mendez, and R. Bowden, “Aft-vo: Asynchronous fusion transformers for multi-view visual
odometry estimation,” arXiv preprint arXiv:2206.12946, 2022.

[7] A. O. Françani and M. R. O. A. Maximo, “Dense prediction transformer for scale estimation in monocular visual
odometry,” in 2022 Latin American Robotics Symposium (LARS), 2022 Brazilian Symposium on Robotics (SBR),
and 2022 Workshop on Robotics in Education (WRE), oct 2022.

[8] H. Zhao, J. Zhang, S. Zhang, and D. Tao, “Jperceiver: Joint perception network for depth, pose and layout
estimation in driving scenes,” in European Conference on Computer Vision, pp. 708–726, Springer, 2022.

[9] S. Shen, Y. Cai, W. Wang, and S. Scherer, “Dytanvo: Joint refinement of visual odometry and motion segmenta-
tion in dynamic environments,” arXiv preprint arXiv:2209.08430, 2022.

[10] W. Wang, Y. Hu, and S. Scherer, “Tartanvo: A generalizable learning-based vo,” arXiv preprint
arXiv:2011.00359, 2020.

[11] Z. Teed, L. Lipson, and J. Deng, “Deep patch visual odometry,” arXiv preprint arXiv:2208.04726, 2022.

[12] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman, “Averaging quaternions,” Journal of Guidance, Control,
and Dynamics, vol. 30, no. 4, pp. 1193–1197, 2007.

8

